Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Effect of a Preload on the Decoupling Efficiency of Exhaust Flexible Coupling Devices

1997-11-17
973272
The variation in the decoupling effect of exhaust flexible couplings under a vertical preload caused by changes in the direction of the exhaust pipe routing was investigated. Both self-supporting and underbody flexible couplings were tested. The results indicate that, in general, a preload decreases the decoupling efficiency of both types of flexible couplings. In addition, the results indicate that the efficiency of the flexible coupling is effected by the following three conditions: the direction of preload with respect to gravity, the location of the preload relative to the coupling, and the stiffness of the various components of the flexible coupling.
Technical Paper

The Effect of Vehicle Exhaust System Components on Flow Losses and Noise in Firing Spark-Ignition Engines

1995-05-01
951260
Sound attenuation and flow loss reduction are often two competing demands in vehicle breathing systems. The present study considers a full vehicle exhaust system and investigates both the sound attenuation and the flow performance of production configurations including the catalyst, the resonator, and the muffler. Dynamometer experiments have been conducted with a firing Ford 3.0L, V-6 engine at wide-open throttle with speeds ranging from 1000 to 5000 rpm. Measurements including the flow rates, the temperatures and the absolute dynamic pressures of the hot exhaust gases at key locations (upstream and downstream of every component) with fast-response, water-cooled piezo-resistive pressure transducers facilitate the calculation of acoustic performance of each component, as well as the determination of flow losses caused by these elements and their influence on the engine performance.
Technical Paper

The Effect of Turbulence on the Hydrocarbon Emissions from Combustion in a Constant Volume Reactor

1984-02-01
840366
A cylindrical combustion bomb with dynamic charging system and electro-hydraulic sampling valve is used to study the effects of turbulence on hydrocarbon (HC) emissions from a quench layer and from artificial crevices. The turbulence level is varied by changing the delay time between induction of combustible charge and ignition. Propane-air mixtures were studied over an initial pressure range of 150 to 500 kPa and equivalence ratios of 0.7 to 1.4. Sampling valve experiments show that quench-layer fuel hydrocarbons are extensively oxidized within 5 ms of flame arrival under laminar conditions and that turbulence further reduces the already low level. Upper limit estimates of the residual wall layer HC concentration show that residual quench layer hydrocarbons are only a small fraction of the exhaust HC emission.
Technical Paper

The Effect of Stress Absorbing Layers on the Wear Behavior of Painted Plastic Substrates

1995-02-01
950801
Erosion damage to automotive car bodies caused by stones and small sand particles and road debris significantly affects the appearance of paint. Painted engineering plastics as well as precoated sheet steel are affected by erosion phenomenon. Erosion of painted plastic substrates results in cosmetic concerns while that on metal substrates results in cosmetic to perforation corrosion. This work describes a laboratory simulation of erosion of painted plastic substrates by small particles on various paint and substrate types. Gloss loss was used to quantitatively evaluate erosion of painted surfaces. Wear behavior of painted plastic substrates to slag sand impact was evaluated as a function of several variables including paint type (one-component melamine crosslinked (1K) vs. two-component isocyanate crosslinked (2K)), thermal history, and coating modulus. The effect of slag sand type (particle size and chemical composition) was studied.
Technical Paper

The Effect of Racetrack / High Energy Driving on Brake Caliper Performance

2006-04-03
2006-01-0472
It is well understood that conditions encountered during racetrack driving are amongst the most severe to which vehicle braking systems can be subjected. High braking pressure is combined with enormous energy input and high temperatures for multiple braking events. Brake fade, degradation of brake pedal feel, and brake lining taper/overall wear are common results of racetrack usage. This paper focuses on how racetrack and high energy driving-type conditioning affects the performance of the brake caliper - in particular, its ability to maintain an even pressure distribution at all of its interfaces (pad to rotor, piston to pad backing plate, and housing to pad backing plate).
Technical Paper

The Effect of Mileage on Emissions and Emission Component Durability by the Fuel Additive Methylcyclopentadiencyl Manganese Tricarbonyl (MMT)

1992-02-01
920730
Vehicle emissions have been measured and the results statistically evaluated for a vehicle test fleet consisting of four Escorts and four Explorers using both a fully formulated durability fuel doped with methylcyclopentadienyl manganese tricarbonyl (MMT) at 1/32 gram Mn/gallon and the same fully formulated durability fuel without the MMT. The fleet was divided in half -- half with MMT and half without MMT doped fuel. This report covers emission measurement results at 5,000; 15,000; 50,000 and 100,000 miles of exposure to MMT doped fuel. A modified paired t-test is used to analyze the emission data obtained from all the fleet vehicles. The statistical evaluation of both feedgas and tailpipe emissions indicate that the use of MMT is detrimental to emissions of HC at the 15,000 mile; 50,000 mile and 100,000 mile levels of MMT exposure. As mileage is accumulated, the pronounced the effect on HC by the fuel additive MMT.
Technical Paper

The Effect of MMT on the OBD-11 Catalyst Efficiency Monitor

1993-10-01
932855
The effect of MMT on the OBD-II catalyst efficiency monitor has been investigated. The results conclusively show that manganese which is deposited onto the catalyst during the combustion of MMT- containing fuel provides for an increased level of catalyst oxygen storage capacity. This added oxygen storage was found to result in a reduced rear EGO sensor response and caused malfunctioning catalysts to be incorrectly diagnosed by the OBD-II catalyst efficiency monitor.
Technical Paper

The Effect of Fuel Sulfur on the OBD-II Catalyst Monitor

1997-10-01
972855
The effect of fuel sulfur on the dual HEGO sensor OBD-II catalyst monitor has been investigated. Laboratory studies revealed two competing effects of the fuel sulfur on the operation of the catalyst monitor: 1. the loss of catalyst oxygen storage capacity, and 2. the degradation in the response rate of the rear HEGO sensor. The magnitude of the loss in catalyst OSC relative to the increase in rear HEGO sensor response time determined whether the rear HEGO sensor index increased, decreased, or remained constant as the fuel sulfur level was increased. The effect of fuel sulfur on tailpipe emissions and the catalyst monitor was also measured for two LEVs equipped with Pd-only catalyst technology (a 1997MY Escort and a 1998MY Crown Victoria). For both vehicles, the effect of the fuel sulfur on the rear HEGO sensor response characteristics dominated; as the fuel sulfur level was increased, tailpipe emissions increased, but the rear HEGO sensor index decreased.
Technical Paper

The Effect of Exhaust Gas Recirculation on Soot Formation in a High-Speed Direct-injection Diesel Engine

1996-02-01
960841
A number of tests were conducted on a 2.5 litre, high-speed, direct-injection diesel engine running at various loads and speeds. The aim of the tests was to gain understanding which would lead to more effective use of exhaust gas recirculation (EGR) for controlling exhaust NOx whilst minimising the penalties of increased smoke emission and fuel consumption. In addition to exhaust emission measurements, in-cylinder sampling of combustion gases was carried out using a fast-acting, snatch-sampling valve. The results showed that the effectiveness of EGR was enhanced considerably by cooling the EGR. In addition to more effective NOx control, this measure also improved volumetric efficiency which assisted in the control of smoke emission and fuel consumption. This second of two papers on the use of EGR in diesel engines deals with the effects of EGR on soot emission and on the engine fuel economy.
Technical Paper

The Effect of Exhaust Gas Recirculation on Combustion and NOx Emissions in a High-Speed Direct-injection Diesel Engine

1996-02-01
960840
A number of tests were conducted on a 2.5 litre, high-speed, direct-injection diesel engine running at various loads and speeds. The aim of the tests was to gain understanding which would lead to more effective use of exhaust gas recirculation (EGR) for controlling exhaust NOx. In addition to exhaust emission measurements, extensive in-cylinder sampling of combustion gases was carried out using a fast-acting, snatch-sampling valve. The results showed that the effectiveness of EGR in suppressing NOx was enhanced considerably by intercooling the inlet charge and by cooling the EGR. A companion paper (SAE 960841) deals with the effects of EGR on soot formation and emission [1].
Technical Paper

The Effect of Air/Fuel Ratio on Wide Open Throttle HC Emissions from a Spark-Ignition Engine

1994-10-01
941961
Currently most automotive manufacturers calibrate for rich air/fuel ratios at wide open throttle which produces lower exhaust gas temperatures. Future federal emissions regulations may require less enrichment under these conditions. This study was undertaken to address the question of what happens to engine-out hydrocarbon emissions with different air/fuel ratios at wide open throttle. Tests were run on a single cylinder research engine with a two valve combustion chamber at a compression ratio of 9:1. The test matrix included three air/fuel ratios (10.5, 12.5 and 14.5) and two speeds (1500 and 3000 rpm) at wide open throttle as well as three air/fuel ratios (12.5, 14.6 and 16.5) at a part load condition (1500 rpm, 3.8 bar IMEP). The exhaust was sampled and analyzed for both total and speciated hydrocarbons. The speciation analysis provided concentration data for hydrocarbons present in the exhaust containing twelve or fewer carbon atoms.
Technical Paper

The Development of Advanced Urea-SCR Systems for Tier 2 Bin 5 and Beyond Diesel Vehicles

2010-04-12
2010-01-1183
An advanced diesel aftertreatment system utilizing Selective Catalytic Reduction (SCR) with urea for lean nitrogen oxides (NOx) control was tested on a 2.7L V6 Land Rover vehicle to demonstrate the capability of achieving Tier 2 Bin 5 and lower emission standards for light-duty trucks. SCR washcoat was applied to a diesel particulate filter (DPF) to perform NOx and particulate reduction simultaneously. Advanced SCR systems employed both traditional SCR catalysts and SCR-coated filters (SCRF) to improve the NOx reduction efficiency. The engine-out NOx level was adjusted by modifying the EGR (Exhaust Gas Recirculation) calibration. Cold start NOx performance was improved by SCR warm-up strategy and urea over injection. This study showed the advanced SCR system could tolerate higher NH₃ storage in the SCR catalyst, resulting in overall higher NOx conversion on the FTP-75 test cycle.
Technical Paper

The Development and Implementation of an Engine Off Natural Vacuum Test for Diagnosing Small Leaks in Evaporative Emissions Systems

2003-03-03
2003-01-0719
This paper discusses an approach to detecting small leaks in an automobile's evaporative emissions systems that is a technique based upon ideal gas laws. It does this by monitoring pressure in the system while the vehicle's engine is off. This low cost solution can be easily implemented on General Motors vehicles using existing components. The topics covered in this paper include details on the background of the problem and the technique, the underlying thermodynamics of the technique, a description of the algorithm, testing and data collection considerations.
Technical Paper

The Corporate Technical Information System: The Ford Inhouse information Utility

1987-10-01
871927
Ford Motor Company has developed an inhouse computerized database of product and technical data as an information utility for product and manufacturing engineers and business and marketing analysts. The Corporate Technical Information System (CTIS) is interactive, user friendly, up-to-date, and low cost. CTIS is designed to complement commercial information services. The menu driven program gives users access to IS files including automotive periodical abstracts, vehicle dimensional data, EPA fuel economy data. SAE paper abstracts since 1966, and worldwide materials standards. Searching is done through User defined keywords using Boolean logic to create individual search strategies. CTIS has been used by Ford personnel worldwide since early 1985. Future developments may include offering CTIS to vendors or components and services to Ford Motor Company.
Technical Paper

Testing to Ensure the Achievement of Corporate Goals for Customer Satisfaction

1996-05-01
961276
A process for creating a Customer Correlated, Accelerated, Life Test is presented. This process, which results in a model for predicting reliability, has been applied to a cold weather piston scuff problem. In this paper, the authors will discuss development of frequency distributions for customer environmental and operational use, establishment of customer based failure criteria, development of an accelerated test based on degradation, selection of testing strategies, data analyses, and measurement techniques.
Technical Paper

Techniques for Analyzing Thermal Deactivation of Automotive Catalysts

1992-10-01
922336
Automotive three-way catalysts (TWC) were characterized using temperature-programmed reduction (TPR), x-ray diffraction (XRD), Raman spectroscopy, chemisorption measurements and laboratory activity measurements. Capabilities and limitations of these standard analytical techniques for the characterization of production-type automotive catalysts are pointed out. With the exception of chemisorption techniques, all appear to have general utility for analyzing exhaust catalysts. The techniques were used to show that the noble metals and ceria in fresh Pt/Rh and Pd/Rh catalysts are initially highly dispersed and contain a mixture of interacting and non-interacting species. Thermal aging of these catalysts (in the reactor or vehicle) caused both precious metal and ceria particles to sinter, thereby decreasing the interaction between the two.
Technical Paper

THE APPLICATIONS OF RADIOACTIVITY FOR THE CONTROL AND TESTING OF AUTOMOTIVE MATERIALS

1957-01-01
570035
APPLICATIONS of nuclear energy in automotive manufacture have been made principally in the field of radioactivity. These are grouped under the following categories: radiography, nondestructive testing, gaging and control, tracer techniques, and static neutralizers. Radioactivity techniques are being used in foundry operations to check stock and metal levels in cupolas and distribution of element additives. In steel operations, these techniques are being used to check assimilation of ore-concentrate fines and thickness of rolled sheet steel. Other applications include measurement of pipe and wall thickness in pressure lines and engines, and inspection of castings and welds for internal faults. Radioactive techniques for improving processes, quality, and materials have potentially universal application. Greater industrial access to reactors will permit broader study and speed the development of new applications of radio-activity in industry.
Technical Paper

Sustainable Materials in Automotive Applications

2001-11-12
2001-01-3762
Ford Motor Company has established within its global Ford Product Development System (FPDS), a vehicle product system which strives to maximize recyclability and recoverability while minimizing the total environmental impact of vehicles. One aspect of how the automotive industry can move towards sustainability is to include sustainable materials like recycled and natural materials in its products as well as in its manufacturing process. Additional examples of using materials imparting low life cycle impact exist in both in the US and Europe. By introducing sustainable materials in mass production, huge figures for reducing environmental burdens result, for example, worldwide 140 million pounds of recycled non-metalic materials have been used just for Ford vehicles alone.
Technical Paper

Suppression of Sulfide Emission During Lean Nox Trap Desulfation

2001-03-05
2001-01-1299
Lean NOx traps are being extensively examined (Ref. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12) because they can be efficiently used to reduce the NOx emissions from port fuel injected and direct fuel injected spark ignited gasoline engines. A lean NOx trap (LNT) stores NOx during lean A/F engine operation. However, its storage capacity is limited and the LNT must be regenerated periodically by subjecting the LNT to momentary rich A/F operation for several seconds. The regeneration process releases the NOx that is chemically bonded to the washcoat and subsequently reduces it to N2 and O2. Fuel that contains a non-zero amount of sulfur will contaminate an LNT by significantly reducing its NOx storage capacity. Therefore, except for the case of a zero level of sulfur in the fuel, the LNT must be desulfated on a periodic basis. The desulfation process requires that the temperature of the LNT be raised to a temperature of about 650°C for several minutes.
Technical Paper

Study of a Stratified-Charge DISI Engine with an Air-Forced Fuel Injection System

2000-06-19
2000-01-2901
A small-bore 4-stroke single-cylinder stratified-charge DISI engine using an air-forced fuel injection system has been designed and tested under various operating conditions. At light loads, fuel consumption was improved by 16∼19% during lean, stratified-charge operation at an air-fuel ratio of 37. NOx emissions, however, were tripled. Using EGR during lean, stratified-charge operation significantly reduced NOx emissions while fuel consumption was as low as the best case without EGR. It was also found that combustion and emissions near the lean limit were a strong function of the combination of injection and spark timings, which affect the mixing process. Injection pressure, air injection duration, and time delay between fuel and air injections also played a role. Generating in-cylinder air swirl motion slightly improved fuel economy.
X